标题:适用于城市场景大规模点云语义标识的深度学习网络
作者:杨必胜, 韩旭, 董震
来源:测绘学报
摘要:
近年来, 以点云为代表的三维数据不断涌现, 如何利用人工智能手段, 高度提升点云的解译能力, 实现城市地物目标的语义标识、三维精准提取等成为亟待攻克的难题。为此, 本文提出了一种端到端的三维点云深度学习网络, 通过构建不规则分布点云的上下采样策略、特征多层聚合与传播, 以及顾及样本不均的损失函数, 有效保障了点云采样的高效性、特征提取的准确性及网络整体性能的最优性。三维点云大规模数据集上测试表明, 该深度学习网络在城市场景的语义标识正确性方面取得了优异的结果, 性能优于当前的主流网络, 为三维地理信息的高性能提取提供了有力支撑。
Abstract:
In recent years, point cloud has become an important type of 3D spatial data. How to improve the understanding abilities of point cloud using artificial intelligence for correct semantic labeling and accurate detection of objects is an urgent and difficult problem. This paper hence proposes an end-to-end 3D point cloud deep learning network, which effectively guarantees the efficiencies of point cloud sampling, the accuracy of feature extraction and the optimization of the overall network performance by the up-down sampling strategy of irregular distribution point cloud, multi-layer aggregation and propagation of features and the loss function for uneven samples. The studies on the large-scale 3D point cloud benchmark data show that it achieves excellent performance in semantic labeling for large-scale outdoor scenes of point clouds, better than those of the state-of-art deep learning networks of point cloud, providing a strong support for the high-performance extraction of 3D geospatial information.
端到端的点云语义标识深度学习网络架构